Worsening and Health Effects of Greater Jakarta Air Pollution

- Ahmad Safrudin – KPBB
- Alfred Sitorus – Green Club
- Amalia S Bendang – Youth Science Club

Air Pollution and Health: Evidence to Catalyze Local Action
Better Air Quality 2018
Kuching, Sarawak, Malaysia, 12 – 16 November 2018
Outline

1. Industrialization and motorization
2. Air Pollution Exposure in the Greater Jakarta
3. Health Effect
5. Conclusion and recommendation
Industrialization and Motorization
Motor Vehicle Growth

Total Sales (2017): 1.1 million units of car and 7 units million of motor cycle p.a.
Traffic
Waste
Air pollutants

- Lead (Pb)

Lead smelter @ KPBB

© KPBB
Air Pollution Exposure in the Greater Jakarta
Air Pollution in Various Cities and Its Effect to Public Health

Health Effect - Jakarta Case 2016
58.3% of the Jakarta population (>10 millions) were suffered by various related-air pollution diseases/illness, and paid the direct medical cost IDR 51.2 trillions ~ USD 3.9 billions

<table>
<thead>
<tr>
<th>Sakit/Penyakit</th>
<th>2010</th>
<th>2016</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asthmatic bronchial</td>
<td>1,210,581.00</td>
<td>1,489,014.63</td>
</tr>
<tr>
<td>COPD</td>
<td>153,724.00</td>
<td>172,632.05</td>
</tr>
<tr>
<td>ISPA</td>
<td>2,449,986.00</td>
<td>2,731,734.39</td>
</tr>
<tr>
<td>Pneumonia</td>
<td>336,273.00</td>
<td>373,935.58</td>
</tr>
<tr>
<td>Coronary artery disease</td>
<td>1,246,130.00</td>
<td>1,386,319.63</td>
</tr>
</tbody>
</table>
AAQM in Jakarta 2012-2017, declining slightly

PM$_{2.5}$, PM$_{10}$, NOx, SOx, CO, O$_3$
Currently Air Quality in Jakarta

Source: AirNow, analysis by KPBB
Emission Inventory Results

base year = 2012
projected to 2030

Source: Breathe Easy Jakarta, 2013
Spreading of High Risk Lead Smelters in Jakarta and its Surrounding areas
Health Effect
Air Quality, and Health Effect in Jakarta

- WHO released the report that in 2016 PM contributed to 79,700 premature mortality, and O3 contributed 900 mortality, and defined that 8% total mortality was caused by air pollution exposure in Indonesia.
- Increasing of people in Jakarta who suffered by cancer.

Health Effect - Jakarta Case 2016
- 58.3% of the Jakarta population (>10 millions) were suffered by various related-air pollution diseases/illness, and paid the direct medical cost
 - Rp 51.2 trillions ~ USD 3.9 billions

Hazardous Air Pollutant (HAP). High risk people who stay in surrounding areas of lead smelter is founded such as the children born, and or growing up with having disabilities, down syndrome, mental disorder, abnormal body, acute anemia, tremor, autism, decreasing of intellectuality, learning difficulties, wrist drop, foot drop, mortality, and others.
 - Many adults are suffered high blood pressure, tremor, stomach cram, infertility, kidney failure, male dysfunction, mortality, etc.
BLL Values by Location

<table>
<thead>
<tr>
<th>LOCATION</th>
<th>SITE</th>
<th>n</th>
<th>med</th>
<th>min</th>
<th>max</th>
<th>n</th>
<th>med</th>
<th>n</th>
<th>med</th>
<th>n</th>
<th>med</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kelapa Dua</td>
<td>Site 1</td>
<td>41</td>
<td>8.3</td>
<td>2.2</td>
<td>14.7</td>
<td>34</td>
<td>1,289</td>
<td>68</td>
<td>32</td>
<td>68</td>
<td>971</td>
</tr>
<tr>
<td>Dadap</td>
<td>Site 2</td>
<td>37</td>
<td>8.7</td>
<td>2.3</td>
<td>14.9</td>
<td>45</td>
<td>1,201</td>
<td>90</td>
<td>35</td>
<td>90</td>
<td>853</td>
</tr>
<tr>
<td>Rawa Buaya</td>
<td>Site 3</td>
<td>45</td>
<td>7.9</td>
<td>2.9</td>
<td>13.9</td>
<td>42</td>
<td>8,149</td>
<td>84</td>
<td>47</td>
<td>84</td>
<td>423</td>
</tr>
<tr>
<td>Cipondoh</td>
<td>Ste 4</td>
<td>36</td>
<td>9.8</td>
<td>3.2</td>
<td>15.2</td>
<td>44</td>
<td>6,501</td>
<td>88</td>
<td>44</td>
<td>88</td>
<td>546</td>
</tr>
<tr>
<td>Cinangka</td>
<td>Site 5</td>
<td>39</td>
<td>14.2</td>
<td>3.8</td>
<td>33.7</td>
<td>41</td>
<td>182,678</td>
<td>82</td>
<td>621</td>
<td>82</td>
<td>6387</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>198</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chart: BLL (Blood Lead Level) school-children in 8 cities/regencies: the mostly above threshold level, 2016

Correlation Soil, Window, Floor, and BLL
Control Strategy
Integrated Emission Reduction Strategy

EMISSIONS
- PM, HC, CO, NOx, SOx: Local Air Pollution
- CO2: Global Green House Gas

CLEAN ENERGY
- Lower Emission Vehicle:
 - Euro Standard
 - New Type/Current Production
 - Soot-free Buses
 - Scrapping Car
- Low Carbon Emission Vehicle:
 - Down Sizing
 - Technology Improvement
 - EV as alt Low Carbon Tech
 - Eco-mode application
 - Automatic turn-off at the idling
 - Scrapping Car
 - Appropriate Car Fuel Filling System
- Power Plant with clean fuel and technology:
 - CNG, LPG, LNG
 - No Diesel Fuel, No Coal
- Electric Vehicle:
 - Bus
 - Motor cycle
- Clean Smelter Technology
- Eco-industrial technology.

CLEAN TECHNOLOGY
- MOI, MOT, MOEF, AUTO-INDUSTRY, City Government
- MOI, MOT, MOEF, Pertamina, PGN, PLN, City Government
- MOE, MOI, MO Energy, City Government
- MOE, MOT, MO Energy, Traffic Police, City Government

LAND USE, INDUSTRY, TRAFFIC AND TRANSPORT MANAGEMENT
- MOI, MOT, MOEF, City Government

EMISSION STANDARD
- MOI, MOT, MOEF, City Government

LAW ENFORCEMENT
- MOI, MOT, MOEF, Traffic Police, City Government

TRANSPORTATION
- MOI, MOT, MOEF, City Government

TRANSPORTATION:
- Lower Emission Vehicle:
 - Euro Standard
 - New Type/Current Production
 - Soot-free Buses
 - Scrapping Car
- Low Carbon Emission Vehicle:
 - Down Sizing
 - Technology Improvement
 - EV as alt Low Carbon Tech
 - Eco-mode application
 - Automatic turn-off at the idling
 - Scrapping Car
 - Appropriate Car Fuel Filling System
- Power Plant with clean fuel and technology:
 - CNG, LPG, LNG
 - No Diesel Fuel, No Coal
- Electric Vehicle:
 - Bus
 - Motor cycle
- Clean Smelter Technology
- Eco-industrial technology.

INCENTIVE/disincentive:
- Fiscal:
 - Low Emission Vehicle
 - Vehicle Carbon Tax
 - Fuel Carbon Tax
- Non Fiscal:
 - Market Driven:
 - Low Emission Disclosure
 - Fuel Economy/Low Carbon Vehicle Disclosure and or Fuel Economy Labeling

IN-USED VEHICLE:
- I/M
- Regularly Inspection
- Self Monitoring.
- E-law enforcement for traffic

INDUSTRY:
- Industrial Zone/eco-industrial
- Clean Smelter Management
- Eco-office.
Cost Benefit Analysis

Vehicle Emission Standard

20015-2030

<table>
<thead>
<tr>
<th>Cost Benefit</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
<th>Option 6</th>
<th>Option 7</th>
<th>Option 8</th>
<th>Option 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost Refinery Production</td>
<td>467,416</td>
<td>428,932</td>
<td>431,091</td>
<td>467,416</td>
<td>338,794</td>
<td>464,669</td>
<td>458,053</td>
<td>421,638</td>
<td>466,745</td>
</tr>
<tr>
<td>Technology Utilization</td>
<td>493,312</td>
<td>664,566</td>
<td>15,863</td>
<td>643,108</td>
<td>784,586</td>
<td>30,911</td>
<td>342,032</td>
<td>117,541</td>
<td>493,312</td>
</tr>
<tr>
<td>Total Cost</td>
<td>960,728</td>
<td>1,093,497</td>
<td>446,954</td>
<td>1,110,523</td>
<td>1,123,380</td>
<td>495,580</td>
<td>800,086</td>
<td>539,179</td>
<td>960,057</td>
</tr>
<tr>
<td>Benefit Health Improvement</td>
<td>1,656,264</td>
<td>2,646,587</td>
<td>1,532,923</td>
<td>2,012,137</td>
<td>2,854,542</td>
<td>1,667,728</td>
<td>1,667,729</td>
<td>1,649,883</td>
<td>1,648,305</td>
</tr>
<tr>
<td>Production Saving</td>
<td>27,712</td>
<td>157,826</td>
<td>52,277</td>
<td>27,712</td>
<td>448,399</td>
<td>36,237</td>
<td>57,138</td>
<td>169,923</td>
<td>31,387</td>
</tr>
<tr>
<td>Subsidy Saving</td>
<td>286,392</td>
<td>1,640,422</td>
<td>539,615</td>
<td>286,392</td>
<td>4,601,071</td>
<td>373,975</td>
<td>589,473</td>
<td>1,746,763</td>
<td>324,084</td>
</tr>
<tr>
<td>Total Benefit</td>
<td>1,970,368</td>
<td>4,444,835</td>
<td>2,124,816</td>
<td>2,326,241</td>
<td>7,904,005</td>
<td>2,077,940</td>
<td>2,314,340</td>
<td>3,566,569</td>
<td>2,003,776</td>
</tr>
<tr>
<td>FY 2005-2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Net Benefit</td>
<td>1,009,640</td>
<td>3,351,338</td>
<td>1,677,862</td>
<td>1,215,717</td>
<td>6,780,625</td>
<td>1,582,360</td>
<td>1,514,255</td>
<td>3,027,390</td>
<td>1,043,719</td>
</tr>
<tr>
<td>NPV; SDR 8 %</td>
<td>38,963</td>
<td>803,680</td>
<td>310,516</td>
<td>374,486</td>
<td>1,563,678</td>
<td>290,778</td>
<td>275,887</td>
<td>599,926</td>
<td>47,736</td>
</tr>
<tr>
<td>Net Benefit Average</td>
<td>38,382</td>
<td>128,898</td>
<td>64,533</td>
<td>46,758</td>
<td>260,793</td>
<td>60,860</td>
<td>58,241</td>
<td>116,438</td>
<td>40,143</td>
</tr>
<tr>
<td>FY 2009-2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fuel Saving</td>
<td>286,392</td>
<td>1,640,422</td>
<td>539,615</td>
<td>286,392</td>
<td>4,601,071</td>
<td>373,975</td>
<td>589,473</td>
<td>1,746,763</td>
<td>324,084</td>
</tr>
<tr>
<td>NPV; SDR 8 %</td>
<td>71,395</td>
<td>469,465</td>
<td>127,900</td>
<td>71,395</td>
<td>1,098,827</td>
<td>91,202</td>
<td>144,873</td>
<td>388,089</td>
<td>84,727</td>
</tr>
<tr>
<td>Net Benefit Average</td>
<td>13,018</td>
<td>74,565</td>
<td>24,528</td>
<td>13,018</td>
<td>209,140</td>
<td>16,999</td>
<td>26,794</td>
<td>79,398</td>
<td>14,731</td>
</tr>
</tbody>
</table>

Policy Options on Transportation:

1. Emission Standard
2. Fuel Efficiency + Option 1
3. CNG + Option 1
4. Catalytic Converter + Option 1
5. Hybrid Technology + Option 1
6. Scrapped + Option 1
7. Biofuel + Option 1
8. Public Transport + Option 1
9. Leapfrog Emission Standard + Option 1

Economic Benefit:
- health cost,
- productivity,
- and fuel saving

Control strategy could be reduce health effect and its impact on medical cost as well as social cost

Source: CBA Fuel Economy and Fuel Quality Initiative in Indonesia, UNEP, USEPA, MOEF, KPBB2012
Conclusion and Recommendation

1. Industrialization and motorization tends to increase the intensity of air pollution in Indonesia especially in the large cities such the Greater Jakarta.
2. Air pollution, include Hazardous Air Pollutant exposed the environment in the Greater Jakarta, and cause people are suffered by illness/dieses related to their respiratory.
3. Needs to conduct health and social recovery for the victims of air pollution.
5. Needs to improve nurturing -environmental friendly process- at all level of industrialization and motorization, and **needs to enforce strictly to the polluters.**
Terimakasih

Ahmad Safrudin
Contact => KPBB:
Sarinah Building 12th Floor, Jalan MH Thamrin # 11 Jakarta Indonesia 10350
Phone: +62-21-3190 6807 Fax: +62-21-315 3401
Mobile: +62 816897959 (WA, Line)
Skype: a_safrudin
Twitter: @Mas_Puput
FB: Ahmad Safrudin

e-mail: puput@kpbb.org; kpbb@kpbb.org, www.kpbb.org